Synchronized multichannel lock-in measurement system
The MCL1-540 is a multichannel lock-in amplifier system for the most demanding measurements. With its modular design, the system can synchronously measure up to 10 analog input voltages and 5 outputs currents. Each input has its own dedicated, low-noise preamplifier stage, enabling continuous measurements from nV levels to 10 V.
Even simple resistance measurements require a pair of lock-in amplifiers to measure both current and voltage precisely. The main advantage with the MCL1-540 system is its patented, all-through synchronization. If the measurements are synchronized both in frequency and time, the result will be immune to noise as well as changes in excitation amplitude or frequency. The result is ultimate performance.
The integration of all lock-in amplifiers and analog channels into a single measurement system provides several advantages. The system can easily be configured into advanced multi-harmonic measurement schemes. Outputs can combine DC and AC signals of desired frequency, amplitude, and phase, for differential current-voltage characteristics, generation-detection experiments, and demanding mixed-frequency setups. The integrated preamplifiers are aware of the excitation frequencies while the system is aware of the gains. The preamplifiers can therefore advantageously be set to auto-range, making even the most complex measurement easily manageable.
The system comes with all options and software included. New modules can be
easily added.
Key Specifications
- DC – 100 kHz (500 kHz)
- 30 demodulators X, Y, R, θ & DC
- modular system: up to 10 voltage and 5 current measurements
- different input options:
- low noise 1.8 nV/√Hz, ~1 GOhm
- medium 3.7 nV/√Hz, ~30 GOhm
- high impedance 18 nV/√Hz, ~TOhm
The MCL1-540 is our flexible lock-in platform for highest requirements in research and development.
- Syncronized lock-in measurements of up to 15 analog signals, each with multiple frequency analysis and DC separation
- All modules fully integrated and synchronized
- Simultaneous sampling ADCs and DACs – no multiplexing
- Integrated low-noise preamplifier stages with high input impedance – no need for additional preamplifiers
- Up to 3 sets of demodulators with independent frequencies for each input and output signal. Each demodulator set including synchronous DC, X, and Y
- ADCs seamlessly auto-ranging for sub-nV signals up to ±10 V range with 6+ digit resolution
- Up to 5 modules
- 19″ rack mount
- 1000BASE-T Ethernet and USB 2.0 interface
Module features
- 2 differential analog inputs + 1 analog output per module
- up to 5 modules per system
- analog input:
- Full range ±10 V, pre-amplification 1 to 5000 in 12 steps
- DC & AC-coupling, 0.2 Hz break frequency
- 18-bit ADCs at 1 MSPS
- Three different front-end amplifier options:
- Noise level ~1.8 nV/√Hz at 1 GΩ amplifier impedance (typ. 15 nA input bias current)
- Noise level ~4 nV/√Hz at 30 GΩ amplifier impedance (<1 nA input bias current)
- Noise level ~18 nV/√Hz at ~5 TΩ (typ. 10 pA input bias current)
- analog output:
- 20-bit DAC at 1.33 MSPS
- ±10 V, ±1 V and ±0.1 V full range
- <10 nV/√Hz output noise at 0.1 V range
- 50 mA output current
- Integrated current measurement of output (full scales 50 mA/2 mA/100 µA/5 µA/250 nA)
- Ground referenced & floating
- Trigger/phase marker input & output
Lock-in features
- Synchronized lock-in measurements of up to 15 analog signals, each with multiple frequency analysis and DC separation
- Frequency range DC-500 kHz
- Two sets of 15 lock-ins on arbitrary inputs and/or harmonics
- Each set can demodulate on a independend fundamental frequency
- Synchronous X, Y, DC, R and θ for each lock-in
- Phase resolution 64 bit, integral resolution 96 bit
Output features
- Sine, square-wave, triangle, sawtooth
- Frequency, amplitude, offset & duty cycle programmatically controllable
- Demodulated signal output: X, Y, DC
- Composite functions: sum, difference, product of two base functions
Other features
- Waveform acquisition
- FFT
- Feedback loops
Interfaces
- Control: 1000BASE-T Ethernet and USB 2.0
- USB-host and SDHC card reader for data storage
- Integrated web server
- LabVIEW API
- 40 W power supply, 60 W option
- RJ45 (8P8C modular connectors) for analog signals
Accessories
Pricing information
- see price list
Research References
- Switched ratiometric lock-in amplifier enabling sub-ppm measurements in a wide frequency range: G. Gervasoni, M. Carminati, and G. Ferrari, Review of Scientific Instruments 88, 104704 (2017).
- Advanced Interfacing Techniques for Sensors: B. George, J. K. Roy, V. J. Kumar, and S. C. Mukhopadhyay, editors , Springer International Publishing (2017).
- Nanocalorimeter platform for in situ specific heat measurements and x-ray diffraction at low temperature: K. Willa, Z. Diao, D. Campanini, U. Welp, R. Divan, M. Hudl, Z. Islam, W.-K. Kwok, and A. Rydh, Review of Scientific Instruments 88, 125108 (2017).
- Unconventional magneto-transport in ultrapure PdCoO2 and PtCoO2: N. Nandi, T. Scaffidi, P. Kushwaha, S. Khim, M. E. Barber, V. Sunko, F. Mazzola, P. D. C. King, H. Rosner, P. J. W. Moll, M. König, J. E. Moore, S. Hartnoll, and A. P. Mackenzie, Npj Quantum Materials 3, (2018).
- Nanocalorimetric evidence for nematic superconductivity in the doped topological insulator Sr0.1Bi2Se3: K. Willa, R. Willa, K. W. Song, G. D. Gu, J. A. Schneeloch, R. Zhong, A. E. Koshelev, W.-K. Kwok, and U. Welp, Physical Review B 98, (2018).
- h/e Oscillations in Interlayer Transport of Delafossites: C. Putzke, M. D. Bachmann, P. McGuinness, E. Zhakina, V. Sunko, M. Konczykowski, T. Oka, R. Moessner, A. Stern, M. König, S. Khim, A. P. Mackenzie, and P. J.W. Moll, arXiv:1902.07331 [cond-mat.mtrl-sci], (2020).
- Magnetic and superconducting anisotropy in Ni-doped RbEuFe4As4 single crystals: K. Willa, M. P. Smylie, Y. Simsek, J.-K. Bao, D. Y. Chung, M. G. Kanatzidis, W.-K. Kwok, and U. Welp, Phys. Rev. B 101, 064508 (2020).
- Low-symmetry nonlocal transport in microstructured squares of delafossite metals, P. H. McGuinness, E. Zhakina, M. König, M. D. Bachmann, C. Putzke, P. J. W. Moll, S. Khim, and A. P. Mackenzie, Proc. Natl. Acad. Sci. USA. 118(47), e2113185118 (2021).
- Size effects in microstructured superconductors and quantum materials: R. Fermin, Casimir PhD Series (2022).
- Mesoscopic superconducting memory based on bistable magnetic textures, R. Fermin, N. M. A. Scheinowitz, J. Aarts, and K. Lahabi, Phys. Rev. Research 4, 033136 (2022)
- Bending strain in 3D topological semi-metals: Jonas Diaz, Carsten Putzke, Xiangwei Huang, Amelia Estry, James G Analytis, Daniel Sabsovich, Adolfo G Grushin, Roni Ilan, and Philip J W Moll, J. Phys. D: Appl. Phys. 55 084001 (2022)
- Seebeck coefficient in a nickelate superconductor: electronic dispersion in the strange metal phase: G. Grissonnanche, G. A. Pan, H. LaBollita, D. Ferenc Segedin, Q. Song, H. Paik, C. M. Brooks, A. S. Botana, J. A. Mundy, and B. J. Ramshaw, arXiv:2210.10987 [cond-mat.supr-con] (2022)
- Antiskyrmions and their electrical footprint in crystalline mesoscale structures of Mn1.4PtSn: Moritz Winter, Francisco J. T. Goncalves, Ivan Soldatov, Yangkun He, Belén E. Zúñiga Céspedes, Peter Milde, Kilian Lenz, Sandra Hamann, Marc Uhlarz, Praveen Vir, Markus König, Philip J. W. Moll, Richard Schlitz, Sebastian T. B. Goennenwein, Lukas M. Eng, Rudolf Schäfer, Joachim Wosnitza, Claudia Felser, Jacob Gayles, and Toni Helm, Communications Materials 3, 102 (2022)
- Magnetic circuit for Abrikosov vortices: Vortex motion in a periodic labyrinth of magnetic T and I-shaped elements under a superconducting film: V.K. Vlasko-Vlasov, A. Rydh, R. Divan, D. Rosenmann, A. Glatz, and W.-K. Kwok, J. Mag. and Mag. Mat. 557, 169476 (2022)
- Kerr Electro-Optic Effect-Based Methodology for Measuring and Analyzing Electric Field Distribution in Oil-Immersed Capacitors: Zhaoliang Xing, Hao Ge, Fanqiu Zeng, Shaowei Guo, and Chunjia Gao, Energies 17(13), 3139 (2024)
- Photodetector array for measuring the spatial–temporal distribution characteristics of electric field in oil–pressboard insulation based on the Kerr electro-optic effect: Chunjia Gao, Bo Qi, Chengrong Li, and Yukung Zheng, HighVoltage 1–11 (2024)
- Nonreciprocal transport in the superconducting state of the chiral crystal NbGe2: Yonglai Liu, Xitong Xu, Miao He, Haitian Zhao, Qingqi Zeng, Xingyu Yang, Youming Zou, Haifeng Du, and Zhe Qu, Chinese Phys. B 33 057402 (2024)
- Controllable suppression of the unconventional superconductivity in bulk and thin-film Sr2RuO4 via high-energy electron irradiation: Jacob P. Ruf, Hilary M. L. Noad, Romain Grasset, Ludi Miao, Elina Zhakina, Philippa H. McGuinness, Hari P. Nair, Nathaniel J. Schreiber, Naoki Kikugawa, Dmitry Sokolov, Marcin Konczykowski, Darrell G. Schlom, Kyle M. Shen, and Andrew P. Mackenzie: arXiv:2402.19454 [cond-mat.supr-con] (2024)
- Vortex motion in reconfigurable three-dimensional superconducting nanoarchitectures: Elina Zhakina, Luke Turnbull, Weijie Xu, Markus König, Paul Simon, Wilder Carrillo-Cabrera, Amalio Fernandez-Pacheco, Uri Vool, Dieter Suess, Claas Abert, Vladimir M. Fomin, and Claire Donnelly: arXiv:2404.12151 [cond-mat.mes-hall] (2024)
Downloads
- Brochure MCL1-540
- Manual
- Block diagram
- MCL Software
- MCL full installer
- MCL LabVIEW library
- MCL LabVIEW example code
- Price list
Application Information
- Differential IV-characteristics
- Multi-terminal measurements
- Hall probe arrays
- non-local currents
- Multiple samples on 5 different frequencies
- Lock-in on lock-in/tandem demodulation
- Calorimetry
- AC susceptibility
- nonlinear reconstruction with higher harmonics
- Reconstructing nonlinearity with a diode
- Stabilize current or voltage
- Potentiostat setup
- Boxcar average / alternating polarity
- Drift correction
Technical Notes
- Selecting the right input module
- Selecting time constants
- Function outputs
- Demodulation output
- Synchronization
- Equivalent noise bandwidth